Algorithm for Sparse Approximate Inverse Preconditioners in the Conjugate Gradient Method

نویسندگان

  • Ilya B. Labutin
  • Irina V. Surodina
چکیده

We propose a method for preconditioner construction and parallel implementations of the Preconditioned Conjugate Gradient algorithm on GPU platforms. The preconditioning matrix is an approximate inverse derived from an algorithm for the iterative improvement of a solution to linear equations. Using a sparse matrix-vector product, our preconditioner is well suited for massively parallel GPU architecture. We present numerical experiments and comparisons with CPU implementations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Convergence Estimates For Algebraic Multilevel Preconditioners

We discuss the construction of algebraic multilevel preconditioners for the conjugate gradient method and derive explicit and sharp bounds for the convergence rates. We present several numerical examples that demonstrate the efficiency of the preconditioner. sparse approximate inverse, sparse matrix, algebraic multilevel method, preconditioning, conjugate gradient method, Krylov subspace method...

متن کامل

A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems

This paper is concerned with a new approach to preconditioning for large sparse linear systems A procedure for computing an incomplete factorization of the inverse of a nonsymmetric matrix is developed and the resulting factorized sparse approximate inverse is used as an explicit preconditioner for conjugate gradient type methods Some theoretical properties of the preconditioner are discussed a...

متن کامل

Approximate Inverse Preconditioning of Iterative Methods for Nonsymmetric Linear Systems

A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods. 1. Introduction. We describe a method for computing an incomplete factorization of the inverse of a general sparse matrix A 2 IR nn. The resulting...

متن کامل

Parallel preconditioned conjugate gradient optimization of the Rayleigh quotient for the solution of sparse eigenproblems

A parallel algorithm based on the multidimensional minimization of the Rayleigh quotient is proposed to evaluate the leftmost eigenpairs of the generalized symmetric positive definite eigenproblem. The minimization is performed via a conjugate gradient-like procedure accelerated by a factorized approximate inverse preconditioner (FSAI) and by a number of block preconditioners. The resulting cod...

متن کامل

Parallel Rayleigh Quotient Optimization with FSAI-Based Preconditioning

The present paper describes a parallel preconditioned algorithm for the solution of partial eigenvalue problems for large sparse symmetric matrices, on parallel computers. Namely, we consider the Deflation-Accelerated Conjugate Gradient (DACG) algorithm accelerated by factorized sparse approximate inverse (FSAI) type preconditioners. We present an enhanced parallel implementation of the FSAI pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Reliable Computing

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2013